HETEROCYCLEN-SYNTHESEN MIT 4,4-BIS(TRIFLUORMETHYL)-1,3-DIAZA-BUTA-1,3-DIENEN, II [1]

SPEKTROSKOPISCHE UNTERSUCHUNG DER ISONITRIL- UND DIMETHOXY-CARBEN-ADDUKTE

KLAUS BURGER^{*}, ULRIKE WASSMUTH UND STEFAN PENNINGER

Organisch-Chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4. D-8046 Garching bei München, (B.R.D.)

ZUSAMMENF ASSUNG

Die [4+1]-Cycloaddition von 4,4-Bis(trifluormethyl)-1,3diazabuta-1,3-dienen $\underline{3}$, die aus Amidinen und Hexafluoraceton in Gegenwart wasserentziehender Mittel erhalten werden, und Isonitrilen bzw. Dimethoxycarben wird beschrieben. Die 19 F-NMR-Daten erlauben eine eindeutige Konfigurationszuordnung für die Isonitril-Addukte $\underline{5} - \underline{9}$.

SUMMARY

[4+1] Cycloaddition reactions of 4,4-bis(trifluoromethyl)-1,3-diazabuta-1,3-dienes $\underline{3}$, accessible by reaction of amidines with hexafluoroacetone in the presence of dehydrating reagents, with isonitriles and dimethoxycarbene are described. Configuration of the isonitrile adducts $\underline{5} - \underline{9}$ can be determined on basis of the ¹⁹F NMR data.

EINLEITUNG

Erste Versuche zur Synthese von 1-alkyl- und 1-aryl-substituierten 4,4-Bis(trifluormethyl)-1,3-diazabuta-1,3-dienen aus Amidinen und Hexafluoraceton, in Gegenwart wasserentziehender Mittel, wie Phosphoroxytrichlorid/Pyridin, oder durch Retro-Diels-Alder-Reaktion [2] aus 2,2,6,6-Tetrakis(trifluormethyl)-

0022-1139/82/0000-0000/\$02.75

5,6-dihydro-2H-1,3,5-oxadiazinen scheiterten aufgrund von Folgereaktionen [1]. Durch Einführung eines ortho-disubstituierten Arylrestes in die Skelettposition 1 des Heterodiens sollten diese Folgeprozesse jedoch unterdrückt werden können.

ERGEBNISSE UND DISKUSSION

Wir fanden nun, daß ausgehend von den Amidinen <u>1</u> und Hexafluoraceton <u>2</u> 4,4-Bis(trifluormethyl)-1,3-diazabuta-1,3-diene <u>3</u> in guten Ausbeuten zugänglich sind [3]. Die bisher dargestellten Vertreter dieser Substanzklasse fallen als orangerote, ölige Flüssigkeiten an, die nach der destillativen Reinigung kristallisieren und im Kühlschrank unter Feuchtigkeitsausschluß monatelang lagerbar sind.

4,4-Bis(trifluormethyl)-1,3-diazabuta-1,3-diene $\frac{3}{2}$ reagieren mit Isonitrilen $\frac{4}{2}$ [4]im Temperaturbereich von 50 - 70 °C innerhalb von 24 - 36 Stunden quantitativ.

 $\underline{5a}$: $\mathbb{R}^1 = 2,6$ -Dimethylphenyl, $\mathbb{R}^2 = \text{tert.-Butyl}$; $\underline{5b}$: $\mathbb{R}^1 = 2,4,6$ -Trimethylphenyl, $\mathbb{R}^2 = \text{tert.-Butyl}$; $\underline{6a}$: $\mathbb{R}^1 = \mathbb{R}^2 = 2,6$ -Dimethylphenyl; $\underline{6b}$: $\mathbb{R}^1 = 2,4,6$ -Trimethylphenyl, $\mathbb{R}^2 = 2,6$ -Dimethylphenyl

Die IR-Spektren (KBr) der [1:1]-Addukte zeigen im Doppelbindungsbereich jeweils zwei Absorptionen unterschiedlicher Intensität bei 1760 und 1715 cm⁻¹ (R² = tert.-Butyl) bzw. bei 1715 und 1690 cm⁻¹ (R² = 2,6-Dimethylphenyl) [5]. Wir leiten daraus das Vorliegen einer semicyclischen CN-Doppelbindung ab [6]. Die beiden magnetisch äquivalenten Trifluormethylgruppen

absorbieren bei $\delta = 5.5$ bzw. 7.2 ppm [7]. Für die aus 4,4-Bis-(trifluormethyl)-1-oxa-3-azabuta-1,3-dienen und 4,4-Bis(trifluormethyl)-1-thia-3-azabuta-1,3-dienen und tert.-Butylisocyanid erhaltenen [4+1]-Cycloaddukte wurden δ -Werte von 5 bzw. 7 ppm gemessen [8,9]. Die ¹H-NMR-Spektren zeigen, daß der Phenylring sowie die Reste R¹ und R² nicht an der Reaktion partizipieren. Die ¹³C-NMR-Daten der Verbindungen 5 bestätigen die Präsenz einer cyclischen Amidin-Funktion ($\delta = 171$ ppm) und einer semicyclischen CN-Doppelbindung ($\delta = 136$ ppm).

<u>5 a</u>

Im massenspektrometrischen Abbauschema werden die Bruchstücke der Retro-Reaktion und der $[5 \rightarrow 3+2]$ -Cycloreversion [10] $[(F_3C)_2C-N\equiv C-C_6H_5]^+$ und $[R^1N=C=NR^2]^+$ bzw. für R^2 = tert.-Butyl $[R^1N=C=NH]^+$ sowie das Fragment $[C_6H_5C\equiv NR^1]^+$ mit großer Intensität gefunden. Damit ist eine 5-Imino-2-imidazolin-Struktur gesichert.

Tabelle 1 Z-/E-Isomerenverhältnis

Verb.	R ²	Isomerenverhältnis Z-/E-	19 _{F-NMR-}	Daten ppm
7a/7a 7b/7b 8a/8a	n-Butyl	65 : 35	5.5	9.4
	n-Butyl	65 : 35	5.5	9.4
	Benzyl	74 : 26	5.6	9•4
• 				

(Fortsetzung auf der nächsten Seite)

Verb.	R ²	Isomerenverhältnis Z-/E-	19 _{F-NMR-Daten} S-Werte ppm	
<u>9a/9a</u>	Cyclohexyl	55 : 45	5.6 8.7	
9b/9b	Cyclohexyl	55 : 45	5.5 8.6	

Tabelle 1 (Fortsetzung).

816

Die Reaktion von $\underline{2}$ mit n-Butyl-, Benzyl- und Cyclohexylisocyanid folgt gleichfalls dem Schema der [4+1]-Cycloaddition. Die ¹⁹F-NMR-Spektren zeigen jedoch zwei Resonanzabsorptionen im Bereich von $\delta = 5.5$ und 9 ppm. Dies spricht für das Vorliegen zweier stereoisomerer Formen. Die bei tieferem Feld registrierten Signale sind jeweils deutlich breiter; wir führen dies auf eine long range-Kopplung ($^{6}J_{\rm HF} \leq 1$ Hz) zurück. Das bedeutet, daß es sich bei den bei tieferem Feld absorbierenden Verbindungen um die bezüglich der semicyclischen CN-Doppelbindung E-konfigurierten 5-Imino-2-imidazoline $\overline{2} - \overline{2}$ handeln sollte.

 F_{3C} $N = C_{6}H_{5}$ F_{3C} $N = I_{7}$ F_{3C} $N = I_{7}$ F_{3} $N = I_{7}$ F_{3} $N = I_{7}$ Diese Vermutung wird sowohl durch die ¹H-NMR- als auch die 13 C-NMR-Daten gestützt. Die Protonenresonanzsignale des Restes R² der E-Isomeren werden bei tieferem Feld als die der entsprechenden Z-Isomeren gefunden, da dort der Rest R²

in den abschirmenden Bereich des aus der durch den Fünfring vorgegebenen Ebene gedrehten Arylrestes R¹ zu liegen kommt. Im ¹³C-NMR-Spektrum ist dieser Abschirmungseffekt nur für das α -Kohlenstoffatom des Restes R² deutlich erkennbar; das bei tieferem Feld aufgezeichnete, dem E-Isomeren zuzuordnende Resonanzsignal des α -Kohlenstoffatoms zeigt wiederum eine Linienverbreiterung, die ihre Ursache in einer ⁵J_{FC}-Kopplung hat. Die charakteristische Lage der ¹⁹F-NMR-Signale für die E-

Die charakteristische Lage der '²F-NMR-Signale für die E-($\delta = 9$ ppm) und Z-konfigurierten 5-Imino-4,4-bis(trifluormethyl)-2-imidazoline ($\delta = 5.5$ ppm) erlaubt im Gegensatz zu den Oxa- und Thia-Analogen [8,9] eine eindeutige Konfigurationszuordnung für die aus tert.-Butylisonitril und 2,6-Dimethylphenylisonitril erhaltenen Addukte 5 und 6. Ein δ -Wert im Falle von

5a und 5b von 5.5 ppm spricht dafür, daß in Chloroform bei Raumtemperatur ausschließlich das Z-Isomere vorliegt. Aus dem chemischen Verschiebungswert für <u>6a</u> und <u>6b</u> (δ = 7.2 ppm), dies entspricht dem Mittelwert der E- und Z-Isomeren. schließen wir, daß in Chloroform bei Raumtemperatur ein bezüglich der NMR-Zeitskala schnell verlaufender Isomerisierungsprozeß $\underline{6} \neq \overline{\underline{6}}$ erfolgen muß. Diese Vermutung wird durch die Aufnahme von $^{-19}$ F-NMR-Spektren bei tiefer Temperatur bestätigt. Unterhalb von -60 °C werden in Chloroform zwei separate Signale für die Eund Z-Isomeren gefunden. Die Abhängigkeit der Aktivierungsenergie von E-/Z-Isomerisierungen von CN-Doppelbindungen in Iminen und Amidinen von den unmittelbar an den Stickstoff gebundenen Resten ist eingehend untersucht. Die gefundene Reihenfolge tert.-Butyl > Benzyl > n-Butyl > Cyclohexyl >> 2,6-Dimethylphenyl entspricht der, die aufgrund der Literaturdaten [11], erwartet werden sollte.

Erhitzt man die Dimethoxycarben-Quelle, 7,7-Dimethoxynorbornadien 10 [12], in Gegenwart von 3 in Toluol auf 125 $^{\circ}$ C, so kann nach 3 - 4 Tagen 19 F-NMR-spektroskopisch kein 3 mehr nachgewiesen werden.

Die Konstitutionszuordnung der neu entstandenen Verbindungen gelingt anhand des massenspektrometrischen Abbauschemas. Während die Retro-Reaktion nur mit geringer Intensität (<1%) realisiert ist, stellt das aus einer [5 - 3+2]-Cycloreversion resultierende Fragmention $[R^1-N=C(OCH_3)_2]^{\ddagger}$ den Basispeak dar. Folgende weitere Fragmentionen sind strukturbeweisend: $[M]^{\ddagger}$, $[M - CH_3]^{\ddagger}$, $[M - OCH_3, - CF_3]^{\ddagger}$, $[M - OCH_3, - CF_3, - CH_3]^{\ddagger}$, $[(F_3C)_2C-N=C-C_6H_5]^{\ddagger}$, $[(F_3C)_2C-C=N-C_6H_5 - F]^{\ddagger}$, $[C_6H_5-C=N-R^1]^{\ddagger}$, $[CH_3O-C=N-R^1]^{\ddagger}$. Die beiden magnetisch äquivalenten Trifluormethylgruppen in $\underline{11}$ treten als Singulett bei $\delta = 10.3$ ppm in Resonanz. Die $\underline{13}C-NMR$ -Daten stützen die vorgeschlagene Struktur $\underline{11}$, d.h. das Hetero-1,3-dien $\underline{3}$ wird auch in diesem Falle unter Erhalt seiner Skelettsequenz in das Ringsystem eingebaut.

EXPERIMENTELLER TEIL

Die Schmp. (nicht korrigiert) wurden mit einer Apparatur nach Tottoli (Fa. Büchi) bestimmt. Die Spektren wurden mit folgenden Geräten aufgenommen: IR: Perkin-Elmer 157 G bzw. 257. – ¹H-NMR: Varian A 60, EM 360 bzw. Bruker WP 200 (TMS als innerer Standard). – ¹³C-NMR: Jeol FX 60 bzw. FX 90 (TMS als innerer Standard). – ¹⁹F-NMR: Jeol C 60 HL bei 56.45 MHz (Trifluoressigsäure als äußerer Standard). – Massenspektren: MS 9 von AEI (Elektronenenergie: 70 eV).

Zur Säulenchromatographie wurde Kieselgel 0.063 - 0.200 mm (Säulenabmessung: 50 x 2.5 cm) verwendet.

<u>1-Aryl-2-phenyl-4,4-bis(trifluormethyl)-1,3-diazabuta-1,3-</u> <u>diene</u> 3

Allgemeine Vorschrift: In einer mit CO_2 -Rückflußkühler ausgestatteten Apparatur werden der Lösung eines Amidins <u>1</u> (40 mmol) in 200 ml wasserfreiem Ether unter intensivem Rühren bei 0 $^{\circ}C$ - -10 $^{\circ}C$ 8.30 g (50 mmol) Hexafluoraceton zugesetzt. Der entstandenen klaren Lösung werden bei -15 $^{\circ}C$ gleichzeitig 6.15 g (40 mmol) Phosphoroxytrichlorid und 12.65 g (160 mmol) Pyridin zugetropft. Nach zweitägigem Aufbewahren bei -20 $^{\circ}C$ wird das ausgefallene Pyridiniumsalz abgetrennt und das Filtrat eingeengt. Der verbleibende Rückstand wird mehrmals mit kaltem, wasserfreiem Hexan extrahiert. Die vereinigten Hexanauszüge werden schließlich fraktioniert.

<u>1-(2,6-Dimethylphenyl)-2-phenyl-4,4-bis(trifluormethyl)-1,3-</u> <u>diazabuta-1,3-dien</u> <u>3a</u>

8.96 g (40 mmol) N-(2,6-Dimethylphenyl)-benzamidin $\underline{1}\underline{a}$ liefern 12.65 g (85%) $\underline{3}\underline{a}$; Sdp. 89 °C/0.15 Torr; Schmp. 30 °C.-IR (Film): 1620 cm⁻¹. - ¹H-NMR (CDCl₃): $\delta = 2.18$ (s; 2 CH₃), 7.00 (s br.; 3 Aromaten-<u>H</u>), 7.34 - 7.67 (m; 3 Aromaten-H), 7.67 - 8.05 (m; 2 Aromaten-<u>H</u>). - ¹⁹F-NMR (CDCl₃): $\delta = 10.0$ [s; N=C(CF₃)₂]. - ¹³C-NMR (CDCl₃): $\delta = 17.9$ (<u>CH₃</u>), 116.0 [q, <u>J</u> = 285 Hz; N=C(<u>CF₃</u>)₂], 124.2, 127.1, 127.8, 128.0, 128.9, 131.7, 132.0, 143.8 (Aromaten-<u>C</u>), 141.4 [sept., <u>J</u> = 37 Hz; N=<u>C</u>(CF₃)₂], 152.1 (<u>C</u>-2).

 $C_{18}H_{14}F_6N_2$ (372.3) Ber. C 58.07 H 3.79 N 7.52 Gef. C 57.97 H 3.86 N 7.41

<u>2-Phenyl-4,4-bis(trifluormethyl)-1-(2,4,6-trimethylphenyl)-</u> <u>1,3-diazabuta-1,3-dien</u> <u>3b</u>

9.50 g (40 mmol) N-(2,4,6-Trimethylphenyl)-benzamidin <u>1b</u> liefern 13.30 g (86%) <u>2b</u>; Sdp. 96 °C/0.2 Torr; Schmp. 39 °C. -IR (Film): 1625 cm⁻¹. - ¹H-NMR (CDCl₃): $\delta = 2.15$ (s; 2 o-CH₃), 2.23 (s; p-CH₃), 6.87 (s br.; 2 Aromaten-<u>H</u>), 7.36 - 7.70 (m; 3 Aromaten-<u>H</u>), 7.70 - 8.09 (m; 2 Aromaten-<u>H</u>). - ¹⁹F-NMR (CDCl₃): $\delta = 10.0$ [s; N=C(CF₃)₂]. - ¹³C-NMR (CDCl₃): $\delta = 17.9$ (o-<u>C</u>H₃), 20.7 (p-<u>C</u>H₃), 116.0 [q, <u>J</u> = 285 Hz; N=C(<u>C</u>F₃)₂], 127.1, 127.6, 128.2, 128.8, 128.9, 131.9, 133.5, 141.3 (Aromaten-<u>C</u>), 141.3 [sept., <u>J</u> = 38 Hz; N=<u>C</u>(CF₃)₂], 152.1 (<u>C</u>-2). $C_{19}H_{16}F_{6}N_{2}$ (386.3) Ber. C 59.07 H 4.17 N 7.25 Gef. C 58.75 H 4.23 N 7.36

<u>1-Aryl-5-imino-2-phenyl-4,4-bis(trifluormethyl)-2-imidazoline</u> <u>5</u> - <u>9</u>

Allgemeine Arbeitsvorschrift: Äquimolare Mengen an $\underline{3}$ und des entsprechenden Isonitrils (5 mmol) werden in 25 ml wasserfreiem Toluol 24 - 36 Stunden auf 50 - 70 °C (Badtemperatur) erhitzt. Der Fortgang der Reaktion wird ¹⁹F-NMR-spektroskopisch verfolgt. Nach Abdestillieren des Lösungsmittels wird der verbleibende Rückstand zweimal aus Hexan umkristallisiert.

<u>5-tert.-Butylimino-1-(2,6-dimethylphenyl)-2-phenyl-4,4-bis-</u> (trifluormethyl)-2-imidazolin 5a

1.86 g (5 mmol) $\underline{3a}$ und 0.42 g (5 mmol) tert.-Butylisocyanid liefern 1.80 g (79%) $\underline{5a}$; Schmp. 116 °C. - IR (KBr): 1758, 1715, 1607, 1598, 1569 cm⁻¹. - ¹H-NMR (CDCl₃): $\delta = 0.93$ [s; $C(C\underline{H}_3)_3$], 2.15 (s; 2 $C\underline{H}_3$), 7.00 - 7.28 (m; 3 Aromaten-<u>H</u>), 7.28 - 7.53 (m; 5 Aromaten-<u>H</u>). - ¹⁹F-NMR (CDCl₃): $\delta = 5.5$ [s; $C(C\underline{F}_3)_2$]. - ¹³C-NMR (CDCl₃): $\delta = 18.4$ (\underline{CH}_3), 31.2 [$C(C\underline{H}_3)_3$], 55.5 [$\underline{C}(CH_3)_3$], 76.1 (sept., $\underline{J} = 28$ Hz; \underline{C} -4), 121.7 (q, $\underline{J} =$ 286 Hz; \underline{CF}_3), 128.0, 128.2, 129.0, 129.1, 130.0, 131.2, 134.8, 138.1 (Aromaten- \underline{C}), 136.1 (\underline{C} -5), 171.4 (\underline{C} -2). $C_{23}H_{23}F_6N_3$ (455.4) Ber. C 60.66 H 5.09 N 9.23

Gef. C 60.63 H 4.99 N 9.07

5-tert.-Butylimino-2-phenyl-4,4-bis(trifluormethyl)-1-(2,4,6trimethylphenyl)-2-imidazolin 5b

1.93 g (5 mmol) $\underline{3b}$ und 0.42 g (5 mmol) tert.-Butylisocyanid liefern 1.80 g (77%) $\underline{5b}$; Schmp. 112 °C. - IR (KBr): 1760, 1718, 1602, 1593, 1558 cm⁻¹. - ¹H-NMR (CDCl₃): $\delta = 0.93$ [s; C(CH₃)₃], 2.07 (s; 2 o-CH₃), 2.27 (s; p-CH₃), 6.85 (s br.; 2 Aromaten-<u>H</u>), 7.22 (s; 5 Aromaten-<u>H</u>). - ¹⁹F-NMR (CDCl₃): $\delta =$ 5.5 [s; C(CF₃)₂]. - ¹³C-NMR (CDCl₃): $\delta =$ 18.3 (o-CH₃), 21.1 (p-CH₃), 31.2 [C(CH₃)₃], 55.5 [C(CH₃)₃], 76.0 (sept., $\underline{J} = 28$ Hz; C-4), 121.7 (q, $\underline{J} = 286$ Hz; CF₃), 128.0, 128.2, 129.3, 129.7, 131.2, 132.1, 137.7, 139.9 (Aromaten-C), 136.4 (C-5), 171.7 (C-2). C₂₄H₂₅F₆N₃ (469.5) Ber. C 61.40 H 5.37 N 8.95

Gef. C 61.34 H 5.24 N 8.75

<u>1-(2,6-Dimethylphenyl)-5-(2,6-dimethylphenylimino)-2-phenyl-</u> <u>4,4-bis(trifluormethyl)-2-imidazolin</u> <u>6a</u>

1.86 g (5 mmol) $\underline{3a}$ und 0.66 g (5 mmol) 2,6-Dimethylphenylisocyanid liefern 2.35 g (93%) $\underline{6a}$; Schmp. 156 °C. - IR (KBr): 1718, 1690, 1608 cm⁻¹; (CCl₄): 1705, 1615, 1600 cm⁻¹. - ¹H-NMR (CDCl₃): $\delta = 2.00$ (s; 2 CH₃), 2.08 (s; 2 CH₃), 6.57 - 7.55 (m; 11 Aromaten-<u>H</u>). - ¹⁹F-NMR (CHCl₃): $\delta = 7.2$ [s; C(CF₃)₂]. -¹³C-NMR (CDCl₃): $\delta = 18.6$ (CH₃), 76.2 (sept., <u>J</u> = 29 Hz; <u>C</u>-4), 121.5 (q, <u>J</u> = 285 Hz; <u>C</u>F₃), 122.8, 125.9, 127.0, 128.1, 128.3, 128.4, 129.3, 132.1, 132.7, 136.5, 142.7, 146.0 (Aromaten-<u>C</u> und <u>C</u>-5), 170.6 (<u>C</u>-2).

 $C_{27}H_{23}F_6N_3$ (503.5) Ber. C 64.41 H 4.60 N 8.35 Gef. C 64.37 H 4.77 N 8.42

5-(2,6-Dimethylphenylimino)-2-phenyl-4,4-bis(trifluormethyl)-1-(2,4,6-trimethylphenyl)-2-imidazolin 6b

1.93 g (5 mmol) $\underline{3}\underline{b}$ und 0.66 g (5 mmol) 2,6-Dimethylphenylisocyanid liefern 2.40 g (93%) $\underline{6}\underline{b}$; Schmp. 119 °C. - IR (KBr): 1715, 1685, 1610 cm⁻¹; (CCl₄): 1705, 1612 cm⁻¹. - ¹H-NMR (CDCl₃): $\delta = 2.02$ (s br.; 4 o-CH₃), 2.12 (s; p-CH₃), 6.48 - 7.60 (m; 10 Aromaten-H). - ¹⁹F-NMR (CHCl₃): $\delta = 7.2$ [s; $C(C\underline{F}_3)_2$]. - ¹³C-NMR (CDCl₃): $\delta = 18.6$ (o-CH₃), 20.8 (p-CH₃), 76.1 (sept., $\underline{J} = 29$ Hz; C-4), 121.5 (q, $\underline{J} = 285$ Hz; CF₃), 122.6, 126.0, 127.0, 127.9, 128.3, 128.4, 129.2, 130.1, 132.1, 136.0, 139.1, 142.9, 146.4 (Aromaten- \underline{C} und \underline{C} -5), 170.7 (\underline{C} -2). $C_{28}H_{25}F_6N_3$ (517.5) Ber. C 64.99 H 4.87 N 8.12 Gef. C 65.27 H 4.96 N 8.26

<u>5-(n-Butylimino)-1-(2,6-dimethylphenyl)-2-phenyl-4,4-bis(tri-</u> <u>fluormethyl)-2-imidazolin</u> <u>7a/7a</u> (<u>Z-/E-Isomerengemisch</u>)

1.86 g (5 mmol) $\underline{\underline{3a}}$ und 0.42 g (5 mmol) n-Butylisocyanid liefern 2.10 g (92%) eines Z-/E-Isomerengemisches $\underline{\underline{7a}}/\underline{\underline{7a}}$ im Verhältnis 65:35; Schmp. 72 °C. - IR (KBr): 1702, 1613, 1602, 1575 cm⁻¹.

 $\underline{\underline{7a}}: {}^{1}\text{H-NMR} (\text{CDCl}_{3}): \delta = 0.74 (t, \underline{J} = 7.2 \text{ Hz}; \text{CH}_{2}\text{CH}_{3}), \\ 1.05 - 1.55 (m; \text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}), 2.17 (s; 2 \text{ CH}_{3}), 2.81 (t, \underline{J} = 6.7 \text{ Hz}; \text{N-CH}_{2}), 7.00 - 7.50 (m; 8 \text{ Aromaten-H}). - {}^{19}\text{F-NMR} (\text{CHCl}_{3}): \delta = 5.5 [s; c(c\underline{F}_{3})_{2}].$

 $\frac{7}{2a}: {}^{1}\text{H-NMR} (\text{CDCl}_{3}): \hat{\sigma} = 0.85 (t, \underline{J} = 7.2 \text{ Hz}; \text{CH}_{2}\text{CH}_{3}), \\ 1.05 - 1.55 (m; \text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}), 2.04 (s; 2 \text{ CH}_{3}), 3.64 (t \text{ br.}, \\ \underline{J} = 7.3 \text{ Hz}; \text{ N-CH}_{2}), 7.00 - 7.50 (m; 8 \text{ Aromaten-}\underline{H}). - {}^{19}\text{F-NMR} \\ (\text{CHCl}_{3}): \hat{\sigma} = 9.4 [s \text{ br.}; C(\underline{CF}_{3})_{2}].$

C₂₃H₂₃F₆N₃ (455.4) Ber. C 60.66 H 5.09 N 9.23 Gef. C 60.94 H 5.20 N 9.18

1.93 g (5 mmol) $\underline{3}\underline{b}$ und 0.42 g (5 mmol) n-Butylisocyanid liefern 2.10 g (89%) eines Z-/E-Isomerengemisches $\underline{7}\underline{b}/\underline{7}\underline{b}$ im Verhältnis 65:35; Schmp. 66 ^OC. - IR (KBr): 1697, 1603, 1590, 1562 cm⁻¹.

<u>T</u><u>b</u>: ¹<u>H</u>-NMR (CDCl₃): $\delta = 0.74$ (t, <u>J</u> = 7.2 Hz; CH₂C<u>H₃</u>), 1.05 - 1.55 (m; CH₂C<u>H₂CH₂CH₃</u>), 2.11 (s; 2 o-C<u>H₃</u>), 2.29 (s; p-C<u>H₃</u>), 2.83 (t, <u>J</u> = 6.5 Hz; N-C<u>H₂</u>), 6.86 (s br.; 2 Aromaten-<u>H</u>), 7.15 - 7.45 (m; 5 Aromaten-<u>H</u>). - ¹⁹F-NMR (CHCl₃): $\delta = 5.5$ [s; C(C<u>F₃</u>)₂].

 $\underline{\overline{TD}}: \overset{1}{H} - \text{NMR} (\text{CDCl}_3): \quad \delta = 0.86 \text{ (t, } \underline{J} = 7.1 \text{ Hz}; \text{ CH}_2\text{CH}_3\text{),} \\ 1.05 - 1.55 \text{ (m; } \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\text{),} 1.99 \text{ (s; } 2 \text{ o-CH}_3\text{),} 2.29 \text{ (s;} \\ p-\text{CH}_3\text{),} 3.64 \text{ (t, } \underline{J} = 6.9 \text{ Hz}; \text{N-CH}_2\text{),} 6.86 \text{ (s br.; } 2 \text{ Aromaten-} \\ \end{array}$

⁵⁻⁽n-Butylimino)-2-phenyl-4,4-bis(trifluormethyl)-1-(2,4,6trimethylphenyl)-2-imidazolin 7b/7b (Z-/E-Isomerengemisch)

<u>H</u>), 7.15 - 7.45 (m; 5 Aromaten-<u>H</u>). - ¹⁹F-NMR (CHCl₃): $\delta = 9.4$ $[s; C(C\underline{F}_3)_2].$ $C_{24}H_{25}F_6N_3$ (469.5) Ber. C 61.40 H 5.37 N 8.95 Gef. C 61.56 H 5.47 N 8.95

5-Benzylimino-1-(2,6-dimethylphenyl)-2-phenyl-4,4-bis(tri-<u>fluormethyl)-2-imidazolin</u> $\underline{8a}/\underline{8a}$ (<u>Z-/E-Isomerengemisch</u>)

1.86 g (5 mmol) <u>3a</u> und 0.60 g (5 mmol) Benzylisocyanid liefern 2.28 g (93%) eines Z-/E-Isomerengemisches $\underline{8a}/\underline{8a}$ im Verhältnis 74:26; Schmp. 94 °C. - IR (KBr): 1697, 1603, 1592, 1565 cm^{-1} . <u>Sa</u>: ¹H-NMR (CDCl₃): $\delta = 2.07$ (s; 2 CH₃), 4.08 (s; N-CH₂), 6.85 - 7.50 (m; 8 Aromaten-<u>H</u>). - ¹⁹F-NMR (CHCl₃): $\delta = 5.6$ [s; $C(C\underline{F}_3)_2].$ $\begin{array}{c} \overset{-}{\underline{5}} \overset{-}{\underline{5}} \overset{-}{\underline{5}} & \overset$ 9.4 [s br.; $C(CF_3)_2$]. $C_{26}H_{21}F_{6}N_{3}$ (489.5)

Ber. C 63.80 H 4.32 N 8.58 Gef. C 64.06 H 4.39 N 8.57

5-Cyclohexylimino-1-(2,6-dimethylphenyl)-2-phenyl-4,4-bis-(trifluormethyl)-2-imidazolin <u>9a/9a</u> (Z-/E-Isomerengemisch)

1.86 g (5 mmol) 3a und 0.55 g (5 mmol) Cyclohexylisocyanid liefern 2.10 g (87%) eines Z-/E-Isomerengemisches <u>9a/9a</u> im Verhältnis 55:45; Schmp. 121 ^OC. - IR (KBr): 1703, 1604, 1592, 1563 cm⁻¹.

<u>9a</u>: ¹H-NMR (CDCl₃): $\delta = 0.60 - 1.75 [m; (CH₂)₅], 2.17$ (s; 2 CH₃), 2.90 (mc; N-CH), 7.00 - 7.45 (m; 8 Aromaten-H). -¹⁹F-NMR (CHCl₃): $\delta = 5.6 [s \text{ br.; } C(CF_3)_2].$ $\underline{\underline{92}}$: ¹H-NMR (CDCl₃): $\delta = 0.60 - 1.75$ [m; (CH₂)₅], 2.04 (s; 2 CH₃), 3.82 (mc; N-CH), 7.00 - 7.45 (m; 8 Aromaten-H). -¹⁹F-NMR (CHCl₃): $\delta = 8.7$ [s br.; $C(CF_3)_2$].

 $C_{25}H_{25}F_{6}N_{3}$ (481.5) Ber. C 62.36 H 5.23 N 8.73 Gef. C 62.20 H 5.23 N 8.86

```
<u>5-Cyclohexylimino-2-phenyl-4,4-bis(trifluormethyl)-1-(2,4,6-</u>
trimethylphenyl)-2-imidazolin <u>9b/9b</u> (<u>Z-/E-Isomerengemisch</u>)
```

1.93 g (5 mmol) $\underline{3b}$ und 0.55 g (5 mmol) Cyclohexylisocyanid liefern 1.90 g (77%) eines Z-/E-Isomerengemisches $\underline{9b}$ / $\underline{9b}$ im Verhältnis 55:45; Schmp. 108 °C. - IR (KBr): 1692, 1612, 1600, 1573 cm⁻¹.

 $\underbrace{\underline{9}\underline{b}:}_{1H-NMR} (CDCl_{3}): \delta = 0.65 - 1.75 [m; (C\underline{H}_{2})_{5}], 2.11 (s; 2 \circ -C\underline{H}_{3}), 2.28 (s; p-C\underline{H}_{3}), 2.97 (mc; N-C\underline{H}), 6.86 (s br.; 2 Aromaten-\underline{H}), 7.15 - 7.45 (m; 5 Aromaten-\underline{H}). - \frac{19}{F}-NMR (CHCl_{3}): \delta = 5.5 [s br.; C(C\underline{F}_{3})_{2}]. \\ \underbrace{\underline{9}\underline{b}:}_{2}: \frac{1}{H}-NMR (CDCl_{3}): \delta = 0.65 - 1.75 [m; (C\underline{H}_{2})_{5}], 1.99$

 $\underbrace{\underline{9\underline{b}}: \text{'H-NMR} (\text{CDCl}_{3}): d = 0.65 - 1.75 [\text{m}; (\text{CH}_{2})_{5}], 1.99 }_{(s; 2 \text{ o-CH}_{3}), 2.28 (s; p-\text{CH}_{3}), 3.84 (\text{mc}; \text{N-CH}), 6.86 (s \text{ br}.; 2 \text{ Aromaten-H}), 7.15 - 7.45 (m; 5 \text{ Aromaten-H}). - {}^{19}\text{F-NMR} \\ (\text{CHCl}_{3}): d = 8.6 [\text{s br}.; \text{C}(\text{CF}_{3})_{2}]. \\ C_{26}\text{H}_{27}\text{F}_{6}\text{N}_{3} (495.5) & \text{Ber. C } 63.02 \text{ H } 5.49 \text{ N } 8.48 \\ \text{Gef. C } 63.20 \text{ H } 5.58 \text{ N } 8.55 \\ \end{aligned}$

<u>1-Aryl-5,5-dimethoxy-2-phenyl-4,4-bis(trifluormethyl)-2-</u> imidazoline <u>11</u>

Allgemeine Vorschrift: Zu einer Lösung von 5 mmol $\underline{3}$ in 10 ml wasserfreiem Toluol werden unter Rühren bei 125 $^{\circ}C$ (Badtemperatur) im Verlaufe von 3 Stunden 4.80 g (13.1 mmol) 7,7-Dimethoxy-norbornadien $\underline{10}$ [11], in 20 ml Toluol gelöst, getropft. Der Reaktionsverlauf wird 19 F-NMR-spektroskopisch verfolgt. Nach 2 - 3 Tagen bei 125 $^{\circ}C$ wird das Lösungsmittel entfernt. Die Abtrennung der Verbindungen $\underline{11}$ aus dem Reaktionsgemisch erfolgt durch Säulenchromatographie (Eluent: Chloroform/Hexan 1:1); danach wird aus Hexan umkristallisiert.

5,5-Dimethoxy-1-(2,6-dimethylphenyl)-2-phenyl-4,4-bis(trifluormethyl)-2-imidazolin <u>11a</u>

1.86 g (5 mmol) $\underline{3a}$ und 4.80 g (13.1 mmol) $\underline{10}$ liefern 2.15 g (96%) $\underline{11a}$; Schmp. 135 °C. - IR (KBr): 1603, 1560 cm⁻¹. - ¹H-NMR (CDCl₃): $\delta = 2.30$ (s; 2 CH₃), 3.30 (s; 2 OCH₃), 6.90 - 7.50 (m; 8 Aromaten-<u>H</u>). - ¹⁹F-NMR (CDCl₃): $\delta = 10.3$ [s; $C(C\underline{F_3})_2$]. - ¹³C-NMR (CDCl₃): $\delta = 19.0$ (<u>CH₃</u>), 52.9 (O<u>CH₃</u>), 80.2 (sept., $\underline{J} = 27$ Hz; <u>C</u>-4), 118.8 (<u>C</u>-5), 122.6 (q, $\underline{J} = 284$ Hz; <u>CF</u>₃), 127.8, 128.2, 128.8, 129.0, 129.7, 130.8, 134.6, 139.4 (Aromaten-<u>C</u>), 167.6 (<u>C</u>-2). $C_{21}H_{20}F_6N_2O_2$ (446.4) Ber. C 56.50 H 4.52 N 6.28 Gef. C 56.61 H 4.54 N 6.35

5,5-Dimethoxy-2-phenyl-4,4-bis(trifluormethyl)-1-(2,4,6-trimethylphenyl)-2-imidazolin 11b

1.93 g (5 mmol) $\underline{3}\underline{b}$ und 4.80 g (13.1 mmol) $\underline{1}\underline{0}$ liefern 2.25 g (97%) $\underline{1}\underline{1}\underline{b}$; Schmp. 148 °C. - IR (KBr): 1605, 1590, 1563 cm⁻¹. - ¹H-NMR (CDCl₃): $\delta = 2.22$ (s br.; 3 CH₃), 3.30 (s; 2 OCH₄), 6.78 (s; 2 Aromaten-<u>H</u>), 7.00 - 7.47 (m; 5 Aromaten-<u>H</u>). - ^{T9}F-NMR (CDCl₃): $\delta = 10.3$ [s; $C(C\underline{F}_3)_2$]. - ¹³C-NMR (CDCl₃): $\delta = 18.9$ (o-CH₃), 20.9 (p-CH₃), 52.9 (OCH₃), 80.1 (sept., <u>J</u> = 27 Hz; <u>C</u>-4), 118.6 (<u>C</u>-5), 122.7 (q, <u>J</u> = 283 Hz; <u>C</u>F₃), 127.8, 128.2, 129.7, 130.6, 131.9, 138.6, 138.9 (Aromaten-<u>C</u>), 167.7 (<u>C</u>-2). $C_{22}H_{22}F_6N_2O_2$ (460.4) Ber. C 57.39 H 4.82 N 6.08

Gef. C 57.33 H 4.84 N 6.08

DANKSAGUNG

Wir danken dem Fonds der Chemischen Industrie für finanzielle Unterstützung dieser Untersuchungen. Herrn Dr. G.R. Coraor, E.I. Dupont de Nemours & Co., Wilmington, Delaware, USA, sind wir für eine großzügige Hexafluoraceton-Spende zu Dank verpflichtet.

BIBLIOGRAPHIE

- 1 I. Mitteilung: <u>K. Burger</u>, <u>S. Penninger</u>, <u>M. Greisel</u> und <u>E. Daltrozzo</u>, J. Fluorine Chem. <u>15</u>, 1 (1980).
- 2 J.L. Ripoll, <u>A. Rouessac</u> und <u>F. Rouessac</u>, Tetrahedron <u>34</u>, 19 (1978); Lit.-Zusammenfassung siehe dort.
- 3 Kurzmitteilung: <u>K. Burger</u> und <u>S. Penninger</u>, Synthesis <u>1978</u>, 524.

- 4 <u>H.J. Kabbe</u> in Isonitrile Chemistry, I. Ugi, Edit., Academic Press, New York - London, <u>1971</u>, 93; Lit.-Zusammenfassung siehe dort.
- 5 In Tetrachlormethan wird für die Verbindungen $\underline{62}$ und $\underline{6b}$ in diesem Bereich nur eine Absorption gefunden.
- 6 J.A. Deyrup, Tetrahedron Lett. 1971, 2191.
- 7 Die chemischen Verschiebungswerte der hochfeld vom Standard aufgezeichneten Signale werden mit einem negativen Vorzeichen versehen.
- 8 W.D. Roth, Dissertation Techn. Universität München, 1976.
- 9 <u>K. Burger, R. Ottlinger</u> und <u>J. Albanbauer</u>, Chem. Ber. <u>110</u>, 2114 (1977).
- 10 <u>G. Bianchi, C. De Micheli</u> und <u>R. Gandolfi</u>, Angew. Chem. <u>91</u>, 781 (1979); Angew. Chem., Int. Ed. Engl. <u>18</u>, 721 (1979); Lit.-Zusammenfassung siehe dort.
- 11 <u>H.-O. Kalinowski</u> und <u>H. Kessler</u> in Topics in Stereochemistry, N.L. Allinger und E.L. Eliel, Edit., Wiley-Interscience, New York - London - Sydney - Toronto, Vol. 7, <u>1973</u>, 332; Lit.-Zusammenfassung siehe dort.
- 12 <u>R.W. Hoffmann, K. Steinbach</u> und <u>W. Lilienblum</u>, Chem. Ber. <u>109</u>, 1759 (1976) und dort zitierte Lit.